DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation
نویسندگان
چکیده
In real-world crowd counting applications, the crowd densities vary greatly in spatial and temporal domains. A detection based counting method will estimate crowds accurately in low density scenes, while its reliability in congested areas is downgraded. A regression based approach, on the other hand, captures the general density information in crowded regions. Without knowing the location of each person, it tends to overestimate the count in low density areas. Thus, exclusively using either one of them is not sufficient to handle all kinds of scenes with varying densities. To address this issue, a novel end-to-end crowd counting framework, named DecideNet (DEteCtIon and Density Estimation Network) is proposed. It can adaptively decide the appropriate counting mode for different locations on the image based on its real density conditions. DecideNet starts with estimating the crowd density by generating detection and regression based density maps separately. To capture inevitable variation in densities, it incorporates an attention module, meant to adaptively assess the reliability of the two types of estimations. The final crowd counts are obtained with the guidance of the attention module to adopt suitable estimations from the two kinds of density maps. Experimental results show that our method achieves state-of-the-art performance on three challenging crowd counting datasets.
منابع مشابه
New insights into crowd density analysis in video surveillance systems. (Nouvelles méthodes pour l'étude de la densité des foules en vidéo surveillance)
Along with the widespread growth of surveillance cameras, computer vision algorithms have played a fundamental role in analyzing the large amount of videos. However, most of the current approaches in automatic video surveillance assume that the observed scene is not crowded, and is composed of easily perceptible components. These approaches are hard to be extended to more challenging videos of ...
متن کاملDetection of High-Density Crowds in Aerial Images Using Texture Classification
Automatic crowd detection in aerial images is certainly a useful source of information to prevent crowd disasters in large complex scenarios of mass events. A number of publications employ regression-based methods for crowd counting and crowd density estimation. However, these methods work only when a correct manual count is available to serve as a reference. Therefore, it is the objective of t...
متن کاملAirborne Crowd Density Estimation
This paper proposes a new method for estimating human crowd densities from aerial imagery. Applications benefiting from an accurate crowd monitoring system are mainly found in the security sector. Normally crowd density estimation is done through in-situ camera systems mounted on high locations although this is not appropriate in case of very large crowds with thousands of people. Using airborn...
متن کاملPeople Counting in High Density Crowds from Still Images
We present a method of estimating the number of people in high density crowds from still images. The method estimates counts by fusing information from multiple sources. Most of the existing work on crowd counting deals with very small crowds (tens of individuals) and use temporal information from videos. Our method uses only still images to estimate the counts in high density images (hundreds ...
متن کاملTowards crowd density-aware video surveillance applications
Crowd density analysis is a crucial component in visual surveillance mainly for security monitoring. This paper proposes a novel approach for crowd density measure, in which local information at pixel level substitutes a global crowd level or a number of people per-frame. The proposed approach consists of generating automatic crowd density maps using local features as an observation of a probab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.06679 شماره
صفحات -
تاریخ انتشار 2017